Metagenomic Insights into the Phylogenetic and Metabolic Diversity of the Prokaryotic Community Dwelling in Hypersaline Soils from the Odiel Saltmarshes (SW Spain)
نویسندگان
چکیده
Hypersaline environments encompass aquatic and terrestrial habitats. While only a limited number of studies on the microbial diversity of saline soils have been carried out, hypersaline lakes and marine salterns have been thoroughly investigated, resulting in an aquatic-biased knowledge about life in hypersaline environments. To improve our understanding of the assemblage of microbes thriving in saline soils, we assessed the phylogenetic diversity and metabolic potential of the prokaryotic community of two hypersaline soils (with electrical conductivities of ~24 and 55 dS/m) from the Odiel saltmarshes (Spain) by metagenomics. Comparative analysis of these soil databases with available datasets from salterns ponds allowed further identification of unique and shared traits of microbial communities dwelling in these habitats. Saline soils harbored a more diverse prokaryotic community and, in contrast to their aquatic counterparts, contained sequences related to both known halophiles and groups without known halophilic or halotolerant representatives, which reflects the physical heterogeneity of the soil matrix. Our results suggest that Haloquadratum and certain Balneolaeota members may preferentially thrive in aquatic or terrestrial habitats, respectively, while haloarchaea, nanohaloarchaea and Salinibacter may be similarly adapted to both environments. We reconstructed 4 draft genomes related to Bacteroidetes, Balneolaeota and Halobacteria and appraised their metabolism, osmoadaptation strategies and ecology. This study greatly improves the current understanding of saline soils microbiota.
منابع مشابه
Metagenome Sequencing of Prokaryotic Microbiota from Two Hypersaline Soils of the Odiel Salt Marshes in Huelva, Southwestern Spain
Two 454 shotgun metagenomes were sequenced from hypersaline soil samples collected in the Odiel salt marsh area in Huelva, southwestern Spain. Analysis of contigs and 16S rRNA-related sequences showed that Halobacteria, Balneolaeota, and Bacteroidetes were the dominant groups. Rhodothermaeota and Nanohaloarchaeota were also abundant.
متن کاملInsights of Phage-Host Interaction in Hypersaline Ecosystem through Metagenomics Analyses
Bacteriophages, as the most abundant biological entities on Earth, place significant predation pressure on their hosts. This pressure plays a critical role in the evolution, diversity, and abundance of bacteria. In addition, phages modulate the genetic diversity of prokaryotic communities through the transfer of auxiliary metabolic genes. Various studies have been conducted in diverse ecosystem...
متن کاملMacro and Microelements Drive Diversity and Composition of Prokaryotic and Fungal Communities in Hypersaline Sediments and Saline–Alkaline Soils
Understanding the effects of environmental factors on microbial communities is critical for microbial ecology, but it remains challenging. In this study, we examined the diversity (alpha diversity) and community compositions (beta diversity) of prokaryotes and fungi in hypersaline sediments and salinized soils from northern China. Environmental variables were highly correlated, but they differe...
متن کاملThe Phylogenetic Diversity of Metagenomes
Phylogenetic diversity--patterns of phylogenetic relatedness among organisms in ecological communities--provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relati...
متن کاملBioinformatic Approaches Reveal Metagenomic Characterization of Soil Microbial Community
As is well known, soil is a complex ecosystem harboring the most prokaryotic biodiversity on the Earth. In recent years, the advent of high-throughput sequencing techniques has greatly facilitated the progress of soil ecological studies. However, how to effectively understand the underlying biological features of large-scale sequencing data is a new challenge. In the present study, we used 33 p...
متن کامل